F3B3K10A

Load Cell, 3-axial

Location: Steering Column

Force direction

 F_x , F_y , F_z

Application

Measurement of forces in the steering column

Equivalent types

Customized versions

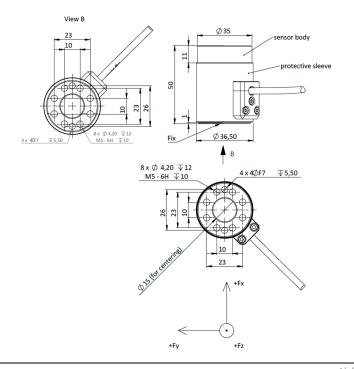
Measurement specification

Resistive

Strain gauges

Options

Polarity according to customer


specifications

Technical description

The applied force causes compression or strain of the base body. The deformation is measured using strain gauges. The wiring of multiple strain gauges for a full bridge circuit compensates for the temperature influence on the zero signal and the cross-influence from other force and torque application.

TD F3B3K10A 220216e.docx

Technical Data Sheet

F3B3K10A

Technical specification

	Unit	Value			
	Offic	F _x	F _y	Fz	
Measuring range	kN	20	20	20	
Sensitivity ¹⁾	μV/V/kN	120	120	55	
Output signal 1), 2)	mV/V	2.4 2.4		1.1	
Bridge resistance	Ω	350	350	700	
Zero signal ¹⁾	mV/V	≤ 0.05			
Amplitude non-linearity ³⁾	%	≤ 1.0			
Hysteresis ³⁾	%	≤ 2.0			
Channel crosstalk ³⁾	%	≤ 5.0			
Supply voltage	V	2–15			
Ultimate load	%	150			
Insulation resistance	ΜΩ	> 100			
Temperature range	°C	-30+70			
Weight (approximate)	g	180			

All values measured at 10 V sensor supply voltage and at 23 °C.

Tel. +49 7229 6996-90

Fax +49 7229 6996-919

¹⁾ Typical value

²⁾ At nominal load

³⁾ Relative nominal range

F3B3A10A

Load Cell, 3-axial

Location: Steering Column

Force direction

 F_x , F_y , F_z

Application

Measurement of forces in the steering column

Equivalent types

Customized version

Measurement specification

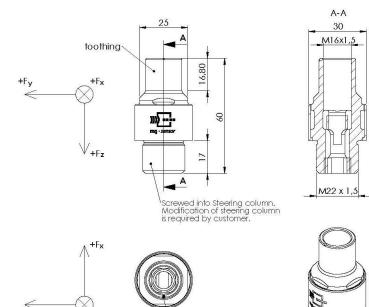
Resistive

Strain gauges

Options

Polarity according to customer

specifications



Technical description

The applied force causes compression or strain of the base body. The deformation is measured using strain gauges. The wiring of multiple strain gauges for a full bridge circuit compensates for the temperature influence on the zero signal and the cross-influence from other force and torque application.

Dimensions

Marking the prientation of axis.

F3B3A10A

Technical specification

	Unit	Value			
	Offic	F _x	Fy	Fz	
Measuring range	kN	10	10	20	
Sensitivity ¹⁾	μV/V/kN	220	220	88	
Output signal 1), 2)	mV/V	2.2	2.2	1.8	
Bridge resistance	Ω	350	350	700	
Zero signal ¹⁾	mV/V	≤ 0.05			
Amplitude non-linearity ³⁾	%	≤ 1.0			
Hysteresis ³⁾	%	≤ 1.0			
Channel crosstalk ³⁾	%	≤ 5.0			
Supply voltage	V	2–15			
Ultimate load	%	150			
Insulation resistance	ΜΩ	> 100			
Temperature range	°C	-30+70			
Weight (approximate)	g	180			

All values measured at 10 V sensor supply voltage and at 23 °C.

TD F3B3A10A 191015e.docx

¹⁾ Typical value

²⁾ At nominal load

³⁾ Relative nominal range

F3B3L11A

Load Cell, 3-axial

Location: Steering Column

Force direction

 F_x , F_y , F_z

Application

Measurement of forces in the steering column

Equivalent types

Customized versions

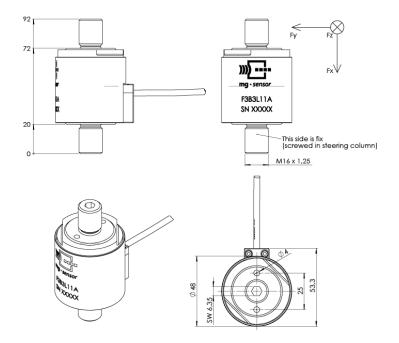
Measurement specification

Resistive

Strain gauges

Options

Polarity according to customer


specifications

Technical description

The applied force causes compression or strain of the base body. The deformation is measured using strain gauges. The wiring of multiple strain gauges for a full bridge circuit compensates for the temperature influence on the zero signal and the cross-influence from other force and torque application.

TD F3B3L11A 191015e.docx

Technical Data Sheet

F3B3L11A

Technical specification

	Unit	Value			
	Offic	F _x	F _y	Fz	
Measuring range	kN	25	10	10	
Sensitivity ¹⁾	μV/V/kN	44	140	140	
Output signal ^{1), 2)}	mV/V	1.1	1.4	1.4	
Bridge resistance	Ω	700	350	350	
Zero signal ¹⁾	mV/V	≤ 0.05			
Amplitude non-linearity ³⁾	%	≤ 1.0			
Hysteresis ³⁾	%	≤ 1.0			
Channel crosstalk ³⁾	%	≤ 5.0			
Supply voltage	V	2–15			
Ultimate load	%	150			
Insulation resistance	ΜΩ	> 100			
Temperature range	°C	-30+70			
Weight (approximate)	g	650 (incl. Adaptors)			

¹⁾ Typical value

²⁾ At nominal load

³⁾ Relative nominal range

N3B3A10A

Load Cell, 3-axial

Location: Steering Column

Force direction F_z , M_x , M_y

Application

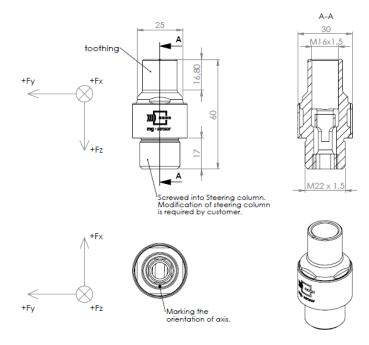
Measurement of forces and moments in the steering column

Equivalent types
Customized version

Measurement specification Resistive Strain gauges

Options

Polarity according to customer specifications



Technical description

The applied force causes compression or strain of the base body. The deformation is measured using strain gauges. The wiring of multiple strain gauges for a full bridge circuit compensates for the temperature influence on the zero signal and the cross-influence from other force and torque application.

Dimensions

Liability for consequential damage resulting

N3B3A10A

Technical specification

	Unit	Value			
	Offic	Fz	M _x	My	
Measuring range	kN	20			
	Nm		200	200	
Sensitivity ¹⁾	μV/V/kN	88			
	μV/V/Nm		10	10	
Output signal ^{1), 2)}	mV/V	1.8	2.0	2.0	
Bridge resistance	Ω	700	350	350	
Zero signal ¹⁾	mV/V	≤ 0.05			
Amplitude non-linearity ³⁾	%	≤ 1.0			
Hysteresis ³⁾	%	≤ 1.0			
Channel cross talk ³⁾	%	≤ 5.0			
Supply voltage	V	2–15			
Ultimate load	%	150			
Insulation resistance	ΜΩ	> 100			
Temperature range	°C	-30+70			
Weight (approximate)	g	180			

¹⁾ Typical value

²⁾ At nominal load

³⁾ Relative nominal range

N3B3E10A

Load Cell, 3-axial

Location: Steering Column

Force direction F_x, M_y, M_z

Application

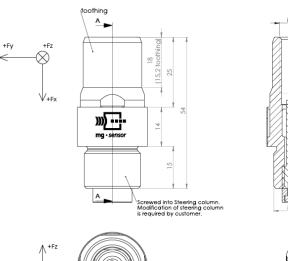
Measurement of forces and moments in the steering column

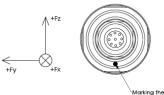
Equivalent types
Customized version

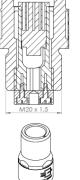
Measurement specification Resistive Strain gauges

Options

Polarity according to customer specifications




Technical description


The applied force causes compression or strain of the base body. The deformation is measured using strain gauges. The wiring of multiple strain gauges for a full bridge circuit compensates for the temperature influence on the zero signal and the cross-influence from other force and torque application.

A-A

N3B3E10A

Technical specification

	Unit	Value			
	Offic	F _x	My	Mz	
Measuring range	kN	20			
	Nm		150	150	
Sensitivity ¹⁾	μV/V/kN	90			
	μV/V/Nm		12.5	12.5	
Output signal ^{1), 2)}	mV/V	1.8	1.9	1.9	
Bridge resistance	Ω	700	350	350	
Zero signal ¹⁾	mV/V	≤ 0.05			
Amplitude non-linearity ³⁾	%	≤ 1.0			
Hysteresis ³⁾	%	≤ 1.0			
Channel cross talk ³⁾	%	≤ 5.0			
Supply voltage	V	2–15			
Ultimate load	%	150			
Insulation resistance	ΜΩ	> 100			
Temperature range	°C	-30+70			
Weight (approximate)	g	120			

¹⁾ Typical value

²⁾ At nominal load

³⁾ Relative nominal range

N3B3F10A

Load Cell, 3-axial

Location: Steering Column

Force direction F_x, M_y, M_z

Application

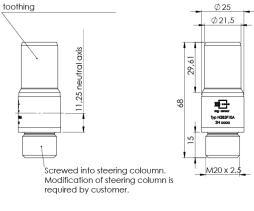
Measurement of forces and moments in the steering column

Equivalent types
Customized version

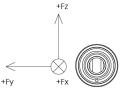
Measurement specification Resistive Strain gauges

Options

Polarity according to customer specifications



Technical description


The applied force causes compression or strain of the base body. The deformation is measured using strain gauges. The wiring of multiple strain gauges for a full bridge circuit compensates for the temperature influence on the zero signal and the cross-influence from other force and torque application.

>

Dimensions

from the use of mg-sensor products is excluded. Specifications subject to change

without notice.

mg·Sensor Pure precision

Technical Data Sheet

N3B3F10A

Technical specification

	Unit	Value			
	Offic	F _x	My	Mz	
Measuring range	kN	20			
	Nm		150	150	
Sensitivity ¹⁾	μV/V/kN	95			
	μV/V/Nm		13.3	13.3	
Output signal ^{1), 2)}	mV/V	1.9	2.0	2.0	
Bridge resistance	Ω	700	350	350	
Zero signal ¹⁾	mV/V	≤ 0.05			
Amplitude non-linearity ³⁾	%	≤ 1.0			
Hysteresis ³⁾	%	≤ 1.0			
Channel cross talk ³⁾	%	≤ 5.0			
Supply voltage	V	2-15			
Ultimate load	%	150			
Insulation resistance	ΜΩ	> 100			
Temperature range	°C	-30+70			
Weight (approximate)	g	130			

¹⁾ Typical value

²⁾ At nominal load

³⁾ Relative nominal range

N5B3H11A

Load Cell, 5-axial

Location: Steering Column

Force direction F_x, F_y, F_z, M_x, M_z

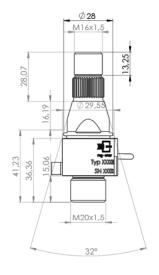
Application

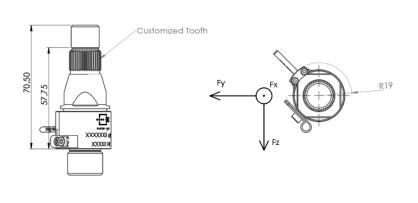
Measurement of forces and moments in the steering column

Equivalent types
Customized version

Measurement specification Resistive Strain gauges

Options


Polarity according to customer specifications



Technical description

The applied force causes compression or strain of the base body. The deformation is measured using strain gauges. The wiring of multiple strain gauges for a full bridge circuit compensates for the temperature influence on the zero signal and the cross-influence from other force and torque application.

N5B3H11A

Technical specification

	Linit	Value				
	Unit	F _x	Fy	Fz	My	Mz
Measuring range	kN	20	10	10		
	Nm				200	200
Sensitivity ¹⁾	μV/V/kN	95	200	200		
	μV/V/Nm				11.5	11.5
Output signal ^{1), 2)}	mV/V	1.9	2.0	2.0	2.3	2.3
Bridge resistance	Ω	700	350	350	350	350
Zero signal ¹⁾	mV/V	≤ 0.05				
Amplitude non-linearity ³⁾	%	≤ 1.0				
Hysteresis ³⁾	%	≤ 2.0				
Channel crosstalk ³⁾	%	≤ 5.0				_
Supply voltage	V	2-15				
Ultimate load	%	150				_
Insulation resistance	ΜΩ	> 100				
Temperature range	°C	-30+7	70			
Weight (approximate)	g	200				

¹⁾ Typical value

²⁾ At nominal load

³⁾ Relative nominal range