Technical Data Sheet

mg·sensor PURE PRECISION

F1B1B11A

Load Cell, 1-axial

Location: Seat Belt

Force direction Force (F)

Application

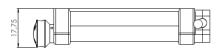
Measurement of forces at the seat belt during automotive crash or sled tests

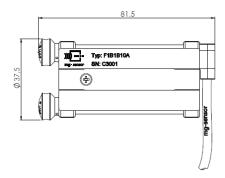
Equivalent types
Customized version

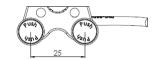
Measurement specification Resistive Strain gauges

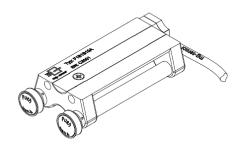
Options

ID-Module integrated in sensor Linearizing circuit (supply voltage: 5-10V)




Technical description


The strap is routed under two completely detachable shafts over the measurement body (sensor). The shafts can be detached using a ball locking device by pressing a button. The shafts can still be rotated in the locked state. The applied force causes strain of the measuring point of the base body. The deformation is measured using strain gauges. The wiring of multiple strain gauges for a full bridge circuit compensates for the temperature influence on the zero signal. The very light belt force sensor made of titanium minimizes the influence of the measuring system due to the low own weight of the sensor. The system-inherent non-linearity can be partially compensated for by an optional integrated linearization circuit.


The standard version without linearization is already shipped with calibration according to ISO/ TS 17242 (third degree polynomial approximation).

Dimensions

TD F1B1B11A 191015e.docx

Technical Data Sheet

F1B1B11A

Technical specification

	Unit	Linearizing circuit	
		without	with
Measuring range	kN	16	
Sensitivity ¹⁾	mV/V/kN	0.18	
	mV/kN		5.9
Output signal ^{1), 2)}	mV/V	2.9	
	mV		95
Bridge resistance	Ω	350	
Zero signal ¹⁾	mV/V	≤ 0.05	
	mV		≤ 1.5
Amplitude non-linearity ³⁾	%	≤ 3.0	≤ 1.0
Hysteresis ³⁾	%	_	-
Supply voltage	V	2–15	5–10
Ultimate load	%	150	
Insulation resistance	ΜΩ	> 100	
Temperature range	°C	-30+70	
Band thickness	mm	≤ 1.3	
Band width	mm	50.8 (2")	
Weight (approximate)	g	83	

All values measured at 10 V sensor supply voltage and at 23 °C, with standard Berger 08022/2/0702 belt type.

Tel. +49 7229 6996-90

Fax +49 7229 6996-919

¹⁾ Typical value

²⁾ At nominal load

³⁾ Relative nominal range